Tips for Requesting Employer Sponsorship

One of the ways that students fund their degree program is through employer sponsorship. Speak to your employer to see if they offer education or tuition benefits.

Beyond funding, employers can also support your degree progress by adding flexibility to your schedule and providing new challenges and opportunities to take advantage of your growing skill set. Having a scheduled conversation to discuss your professional development goals is a great way to help foster support, in whatever form it may take. This tip sheet offers you some information to help you request employer support for the Master of Science in Cybersecurity.

HOW TO SHAPE YOUR SPONSORSHIP REQUEST

SCHEDULE AN APPOINTMENT.
Plan a meeting with your supervisor or human resources representative. In this preliminary meeting, you should be prepared to discuss the program and identify reasons why you want to earn this degree.

DO YOUR RESEARCH.
See if your company has an educational benefits program or has sponsored individuals in the past. Familiarize yourself with these efforts before meeting with your supervisor.

FRAME YOUR ARGUMENT.
Consider why you want to pursue your master's degree and make a list of the reasons why earning your degree will make you more valuable to your organization. Be sure your objectives and reasoning are clear and that you are prepared to discuss your plans.

DEMONSTRATE YOUR VALUE.
Think about key issues your department/company is currently facing and align your skill development in the program with these key issues.

DRIVE ACTION.
Let your employer know that they can speak with an Engineering@Syracuse Admissions Counselor if they have questions about the program or about the application process.
PROGRAM OVERVIEW

Established in 1901, the College of Engineering and Computer Science has a longstanding history of preparing students to produce practical and sustainable solutions.

Syracuse University has been designated by the National Security Agency and Department of Homeland Security as a Center of Academic Excellence in Information Assurance Education (CAEIAE) since 2001 and as a Center of Academic Excellence in Information Assurance Research (CAE-R) since 2009.

MASTER OF SCIENCE IN CYBERSECURITY

The M.S. in Cybersecurity program prepares students to identify, prevent, and counteract cyber crime. Curriculum focuses on five major objectives:

- Design of new systems that are inherently secure
- Protection of systems such as web, mobile, and critical infrastructures
- Systems assurance through application of mathematical logic
- Analysis and detection of malware and other cyberattacks
- Data mining and anomaly detection to identify suspicious cyber behavior

STUDENT EXPERIENCE

No matter where you are in the world, Engineering@Syracuse offers you the same degrees as students who attend on campus.

- A robust online learning experience. Through live online classes, multimedia coursework, collaborative group projects, and hands-on learning opportunities, Engineering@Syracuse combines the collaboration of an on-campus degree with the flexibility of an online program.
- Face-to-face interaction. Through weekly, webcam-enabled classes, students meet face-to-face for candid discussions. The small, intimate classes are led by College of Engineering and Computer Science instructors who are formally trained in the unique aspects of teaching online.
- An on-campus immersion. Students have the opportunity to collaborate with classmates and professors in person during immersive learning experiences. Students meet with peers, learn from industry experts, and participate in workshops.
- Dedicated student support. As part of the Syracuse University community, students have access to meaningful academic and career support.

CURRICULUM OVERVIEW

The 30-36 credit M.S. in Cybersecurity program can be completed in as little as 15 months.

PREPARATORY COURSEWORK
- Data Structures and Algorithms
- Computer Organization & Operating Systems

CORE COURSEWORK
- Computer Security
- Internet Security
- Assurance Foundations
- Design and Analysis of Algorithms
- Principles of Operating Systems

ELECTIVES
- Fundamentals of Data and Knowledge Mining
- Advanced Computer Architecture
- Machine Learning
- Introduction to Cryptography
- Biometrics